2,705 research outputs found

    Charmonium spectral functions in pˉA\bar p A collision

    Get PDF
    We study the in-medium propagation of low-lying charmonium states: J/ΨJ/\Psi, Ψ\Psi(3686), and Ψ\Psi(3770) in a pˉ\bar p Au 1010 GeV collision. This energy regime will be available for the PANDA experiment. The time evolution of the spectral functions of the charmonium states is studied with a BUU type transport model. We observe a substantial effect of the medium in the dilepton spectrum.Comment: 6 pages, 4 figures, Presented at Excited QCD 2017, Sintra, Portuga

    Center Vortices, Nexuses, and Fractional Topological Charge

    Get PDF
    It has been remarked in several previous works that the combination of center vortices and nexuses (a nexus is a monopole-like soliton whose world line mediates certain allowed changes of field strengths on vortex surfaces) carry topological charge quantized in units of 1/N for gauge group SU(N). These fractional charges arise from the interpretation of the standard topological charge integral as a sum of (integral) intersection numbers weighted by certain (fractional) traces. We show that without nexuses the sum of intersection numbers gives vanishing topological charge (since vortex surfaces are closed and compact). With nexuses living as world lines on vortices, the contributions to the total intersection number are weighted by different trace factors, and yield a picture of the total topological charge as a linking of a closed nexus world line with a vortex surface; this linking gives rise to a non-vanishing but integral topological charge. This reflects the standard 2\pi periodicity of the theta angle. We argue that the Witten-Veneziano relation, naively violating 2\pi periodicity, scales properly with N at large N without requiring 2\pi N periodicity. This reflects the underlying composition of localized fractional topological charge, which are in general widely separated. Some simple models are given of this behavior. Nexuses lead to non-standard vortex surfaces for all SU(N) and to surfaces which are not manifolds for N>2. We generalize previously-introduced nexuses to all SU(N) in terms of a set of fundamental nexuses, which can be distorted into a configuration resembling the 't Hooft-Polyakov monopole with no strings. The existence of localized but widely-separated fractional topological charges, adding to integers only on long distance scales, has implications for chiral symmetry breakdown.Comment: 15 pages, revtex, 6 .eps figure

    Vortex waistlines and long range fluctuations

    Get PDF
    We examine the manner in which a linear potential results from fluctuations due to vortices linked with the Wilson loop. Our discussion is based on exact relations and inequalities between the Wilson loop and the vortex and electric flux order parameters. We show that, contrary to the customary naive picture, only vortex fluctuations of thickness of the order of the spatial linear size of the loop are capable of producing a strictly linear potential. An effective theory of these long range fluctuations emerges naturally in the form of a strongly coupled Z(N) lattice gauge theory. We also point out that dynamical fermions introduced in this medium undergo chiral symmetry breaking.Comment: 17 pages, LaTex file with 7 eps figures, revised references, minor comments adde

    Nexus solitons in the center vortex picture of QCD

    Get PDF
    It is very plausible that confinement in QCD comes from linking of Wilson loops to finite-thickness vortices with magnetic fluxes corresponding to the center of the gauge group. The vortices are solitons of a gauge-invariant QCD action representing the generation of gluon mass. There are a number of other solitonic states of this action. We discuss here what we call nexus solitons, in which for gauge group SU(N), up to N vortices meet a a center, or nexus, provided that the total flux of the vortices adds to zero (mod N). There are fundamentally two kinds of nexuses: Quasi-Abelian, which can be described as composites of Abelian imbedded monopoles, whose Dirac strings are cancelled by the flux condition; and fully non-Abelian, resembling a deformed sphaleron. Analytic solutions are available for the quasi-Abelian case, and we discuss variational estimates of the action of the fully non-Abelian nexus solitons in SU(2). The non-Abelian nexuses carry Chern-Simons number (or topological charge in four dimensions). Their presence does not change the fundamentals of confinement in the center-vortex picture, but they may lead to a modified picture of the QCD vacuum.Comment: LateX, 24 pages, 2 .eps figure

    Center vortices and confinement vs. screening

    Full text link
    We study adjoint and fundamental Wilson loops in the center-vortex picture of confinement, for gauge group SU(N) with general N. There are N-1 distinct vortices, whose properties, including collective coordinates and actions, we study. In d=2 we construct a center-vortex model by hand so that it has a smooth large-N limit of fundamental-representation Wilson loops and find, as expected, confinement. Extending an earlier work by the author, we construct the adjoint Wilson-loop potential in this d=2 model for all N, as an expansion in powers of ρ/M2\rho/M^2, where ρ\rho is the vortex density per unit area and M is the vortex inverse size, and find, as expected, screening. The leading term of the adjoint potential shows a roughly linear regime followed by string breaking when the potential energy is about 2M. This leading potential is a universal (N-independent at fixed fundamental string tension KFK_F) of the form (KF/M)U(MR)(K_F/M)U(MR), where R is the spacelike dimension of a rectangular Wilson loop. The linear-regime slope is not necessarily related to KFK_F by Casimir scaling. We show that in d=2 the dilute vortex model is essentially equivalent to true d=2 QCD, but that this is not so for adjoint representations; arguments to the contrary are based on illegal cumulant expansions which fail to represent the necessary periodicity of the Wilson loop in the vortex flux. Most of our arguments are expected to hold in d=3,4 also.Comment: 29 pages, LaTex, 1 figure. Minor changes; references added; discussion of factorization sharpened. Major conclusions unchange

    Vortices and confinement at weak coupling

    Full text link
    We discuss the physical picture of thick vortices as the mechanism responsible for confinement at arbitrarily weak coupling in SU(2) gauge theory. By introducing appropriate variables on the lattice we distinguish between thin, thick and `hybrid' vortices, the latter involving Z(2) monopole loop boundaries. We present numerical lattice simulation results that demonstrate that the full SU(2) string tension at weak coupling arises from the presence of vortices linked to the Wilson loop. Conversely, excluding linked vortices eliminates the confining potential. The numerical results are stable under alternate choice of lattice action as well as a smoothing procedure which removes short distance fluctuations while preserving long distance physics.Comment: 21 pages, LaTe
    corecore